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Abstract: We study deformations of the A-model in the presence of fluxes, by which

we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ

construction. There are two natural deformations of the A-model in the AKSZ language:

1) the Zucchini model, which can be defined on a generalized complex manifold and reduces

to the A-model when the generalized complex structure comes from a symplectic structure,

and 2) a topological membrane model, which naturally accommodates fluxes, and reduces

to the Zucchini model on the boundary of the membrane when the fluxes are turned

off. We show that the fluxes are related to deformations of the Courant bracket which

generalize the twist by a closed 3-from H, in the sense that satisfying the AKSZ master

equation implies precisely the integrability conditions for an almost generalized complex

structure with respect to the deformed Courant bracket. In addition, the master equation

imposes conditions on the fluxes that generalize dH = 0. The membrane model can be

defined on a large class of U(m)- and U(m)×U(m)-structure manifolds relevant for string

theory, including geometries inspired by (1, 1) supersymmetric σ-models with additional

supersymmetries due to almost complex (but not necessarily complex) structures in the

target space. In addition we show that the model can be defined on three particular half-flat

manifolds related to the Iwasawa manifold. When only the closed 3-form flux is turned on

it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau.

We argue that deformations from the standard A-model are due to the choice of gauge fixing

fermion, rather than a flux deformation of the AKSZ action. The particularly interesting

cases arise when the fermion depends on auxiliary fields, the simplest possibility being due

to the (2, 0) + (0, 2) component of a non-trivial b-field. The model is generically no longer

evaluated on holomorphic maps and defines new topological invariants. Deformations due

to H-flux can be more radical, completely preventing auxiliary fields from being integrated

out.
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1. Introduction

In this paper we study deformations of the topological A-model [1] by rank-three tensors

with anti-symmetrized upper/lower indices, Hijk, f
i
jk, Q

jk
i , and Rijk, which we refer to

as fluxes. Our approach makes use of the AKSZ construction, originally introduced in [2]

by Alexandrov, Kontsevich, Schwarz, and Zoboronsky, which is a very general framework

that enables a geometric construction of topological models by making use of the Batalin-

Vilkovisky (BV) formalism [3, 4]. Because the construction involves standard gauge fixing

techniques, it is conceptually very different to the ’twisting’ procedure, where one obtains a

topological theory starting from a (2, 2) supersymmetric σ-model, but the BRST operator

has no interpretation as originating from some underlying gauge theory. In the AKSZ

construction deformations from the A-model are naturally introduced in two stages. First

we consider the standard A-model action, and deform the symplectic structure to some

generalized complex structure [5]. In this step one is essentially concerned with the Zucchini
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model [6] on a generalized complex manifold.1 In the second stage we consider an AKSZ

action of a topological membrane with a boundary, which naturally incorporates the fluxes

and reduces to the Zucchini model on the boundary when these are turned off. When

the fluxes are turned on the membrane Lagrangian is no longer a total derivative, so

the theory is genuinely three dimensional. Topological membrane models correspond to

Courant algebroids [8], and have been studied extensively in the mathematics [9 – 13] and

the physics literature [14 – 18].

In order to define a topological model the BV master equation must be satisfied, which

implies constraints on the target space geometry. Without fluxes the master equation is

satisfied for a generalized complex geometry. When the fluxes are turned on we show that

the generalization can be understood in terms of the integrability conditions for an al-

most generalized complex structure with respect to a deformation of the standard Courant

bracket by the H-, f -, Q- and R-fluxes (when only the H-flux is turned on this is the

standard H-twisted bracket studied in [5]). More precisely, there are two groups of equa-

tions that arise from the master equation. The first group is satisfied if the integrability

conditions with respect to the deformed bracket are, and the second group contains Bianchi

identity type relations which generalize the condition dH = 0. The latter condition arises

by requiring the H-twisted bracket to be a Courant algebroid bracket, but the differential

conditions on the f -, Q-, and R-fluxes can not be understood in an analogous manner.

The BV master equation can be satisfied for a large class of almost generalized complex

manifolds with flux, some of which are relevant for string theory. We study the topological

membrane on almost complex U(m)-structure geometries related to (2, 1)-supersymmetric

σ-models, for which the torsion is obtained by raising an index of a closed 3-form H.

One can also consider U(m) geometries for which the torsion is not totally antisymmetric.

Either way, it is the f -flux, given by the torsion tensor, that needs to be turned on in the

topological model, and the Bianchi identity type condition can be written as R
(T )
τ [αβγ] = 0,

where R(T ) is the torsionful Riemann tensor. This is automatically satisfied for the σ-

model geometries, but provides a constraint when the torsion is not totally antisymmetric,

which we show is satisfied for three explicit examples of half-flat manifolds. Furthermore,

we discuss a class of geometries related to (2, 2) supersymmetric σ-models. These have

U(m) × U(m) structure, and are characterized by two almost complex structures, one

of which is integrable and the other not. The fluxes that need to be turned on in the

topological model are H, f , and R, where f and R are obtained by raising the indices of H.

The σ-model geometries are expected to contain solutions of the string theory equations of

motion to lowest order in α′ [19], in a warped compactification to flat spacetime, while half-

flat manifolds arise as mirrors of Calabi-Yau three-folds with electric NS 3-form flux [20]. In

relation to type II compactifications to four dimensions, we argue that the SU(3) σ-model

geometries should break all spacetime supersymmetry, and the SU(3) × SU(3) geometries

leave N = 1 supersymmetry intact.

To fully specify the topological theory one must impose a gauge fixing prescription,

1The Zucchini model can also be defined on more general ”Poisson-quasi-Nijenhuis” geometries [7], but

we do not consider such geometries in this paper.
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and this step is in general very intricate. We analyze the gauge fixing only in the context of

two-dimensional models with H-flux, by exploiting the fact that in this case it is possible to

obtain a string model from the membrane model. This is because one can always perform

an appropriate b-transform in the membrane model, with db ∝ H, in order to obtain an

action that is a total derivative and reduces to a string model on the boundary. We study

a Calabi-Yau manifold with 3-form flux in this setting. Gauge fixing follows directly from

the standard A-model, and we argue that deformations from the A-model actually occur

at the level of gauge fixing. This seems to contradict the formal proofs in BV quantization

which show an anomaly free theory to be invariant under deformations of the gauge fixing

fermion. However, these proofs don’t take into account non-perturbative effects, which are

central for topological theories. Non-trivial deformations of the A-model can occur when

the gauge fixing fermion depends on H-flux or the (2, 0)+(0, 2) component of a non-trivial

b-field. In general this means that the model is no longer evaluated on holomorphic maps,

and describes new topological invariants. The b-field case is the simplest, and we study

it in detail. Deformations due to H-flux can have a more dramatic impact, preventing

fields which are auxiliary in the AKSZ construction of the standard A-model from being

integrated out.

The outline of the paper is as follows. In sections 2 and 3 we give brief reviews of

generalized complex geometry and the BV procedure. The deformed Courant bracket is

introduced in section 2, and the integrability conditions for an almost generalized complex

structure with respect to this bracket are given in appendix B. The AKSZ construction is

reviewed in section 4, with particular emphasis on the A-model and the Zucchini model.

In Subsection 4.1 we demonstrate the invariance of the A-model under b-transforms (with

db = 0, unlike in the context of a Calabi-Yau with flux above), showing that the effect

of a b-transform can be undone by an appropriate choice of a gauge fixing fermion, but

only once the auxiliary fields have been integrated out. In section 6 we study topological

membrane models on U(m)- and U(m) × U(m)-structure manifolds with almost complex

structures, and in section 7 we study topological string models on Calabi-Yau manifolds

with 3-form flux. Some concluding remarks are given in section 8.

2. Generalized complex geometry

An almost generalized complex structure [5] on a manifold M is an an endomorphism J

of the sum of the tangent and cotangent bundles TM ⊕ T ∗M which satisfies J 2 = −1,

and is compatible with the canonical metric G on TM⊕ T ∗M:

G =

(
0 1

1 0

)
. (2.1)

This generalizes the concept of an almost complex structure I, which is an endomorphism

of TM that squares to −1. Writing J in components2,

J =

(
J P

L K

)
, (2.2)

2We roughly follow the component notation of [21].
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the compatibility with respect to G reads

J i
j +K

j
i = 0 , Lij + Lji = 0 and P ij + P ji = 0 , (2.3)

and J 2 = −1 is equivalent to

Jk
iJ

i
p + P kiLip = −δk

p , J
(k
i P

j)i = J i
(jLk)i = 0 . (2.4)

Using an almost complex structure one can define the operators

p± :=
1

2
(1± iI) (2.5)

that project onto holomorphic and antiholomorphic subspaces of TM ⊗ C. If these are

involutive with respect to the Lie bracket the almost complex structure is integrable. The

natural generalization of the Lie bracket for TM⊕ T ∗M is the Courant bracket,

[X + η, Y + ν]C = [X,Y ] + LXν − LY η −
1

2
d(iXν − iY η) , (2.6)

where X,Y are sections of TM and η, ν sections of T ∗M. An almost generalized complex

structure is actually generalized complex if the eigenbundles l and l∗ of (T⊕T ∗)⊗C defined

by the projectors

Π± :=
1

2
(1± iJ ) (2.7)

are involutive with respect to the Courant bracket:

Π∓[Π±(X + η),Π±(Y + ν)]C = 0 . (2.8)

One can show that l and l∗ are maximal isotropic subbundles of (TM⊕T ∗M)⊗C, and are

indeed dual spaces, as the notation indicates. The integrability of an almost generalized

complex structure with respect to the Courant bracket implies that one can work in a chart

which is a product of the standard complex space and the standard symplectic space.3

Complex and symplectic geometries are special cases of the integrable generalized

complex structures

Jcpx =

(
I 0

0 −It

)
and Jsym =

(
0 −ω−1

ω 0

)
, (2.9)

where ω is a symplectic form. Kähler manifolds hold both of these structures, in which case

ω is the Kähler form. A less trivial example is that of hyper-Kähler geometry, characterized

by a pair of covariantly constant complex structures I(±), from which the two generalized

complex structures

J(±) =

(
I i
(+)j ± I i

(−)j −(Iij

(+)
∓ I

ij

(−)
)

I
(+)
ij ∓ I

(−)
ij −(I

(+)i
j ± I

(−)i
j )

)
(2.10)

can be constructed.

3This result is derived in section 4.7 of [5].
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The structure group of TM⊕T ∗M that preserves G is O(d, d), where d is the dimension

of M. The subgroup of O(d, d) that leaves the Courant bracket invariant is given by

diffeomorphisms and b-transform, the latter being skew O(d, d) transformation that act as

eb(X + η) = X + η + iXb , (2.11)

for some closed 2-form b. Under a b-transform by a b field that is not closed, but obeys

3db = H, the Courant bracket is deformed to the H-twisted Courant bracket:

[X + η, Y + ν]H = [X + η, Y + ν]C + iXiYH . (2.12)

It turns out that the interpretation of the integrability conditions with respect to [, ]H
are the same as for the standard Courant bracket, the crucial property in the derivation

being that b-transforms don’t change the type of the generalized complex structure - type

being the dimension of the complex subspace. Bi-Hermitian geometry [23, 5, 24 – 30] is

characterized by J(±) integrable with respect to [, ]H , while a generalization of Kähler

geometry with torsion [31, 32] is characterized by Jcpx and Jsym integrable with respect to

[, ]H . We will give more details about both of these geometries in section 6.

The +i eigenbundle l has the structure of a Lie algebroid [5, 33]. A Lie algebroid L is

a vector bundle on M together with a Lie bracket [·, ·] that acts on sections of L, and an

anchor map a : C∞(L) → C∞(TM) that satisfies:

a([X,Y ]) = [a(X), a(Y )] (2.13)

[X, fY ] = f [X,Y ] + (a(X)f)Y ∀X,Y ∈ C∞(L), f ∈ C∞(M) .

There is a natural exterior derivative dL : C∞(ΛkL∗) → C∞(Λk+1L∗), where L∗ is the dual

space to L, that can be defined using the Lie bracket and obeys (dL)2 = 0. Furthermore,

l ⊕ l∗ has the structure of a Lie bi-algebroid, which is a pair of Lie algebroids (L,L∗) with

the additional requirement that dL obeys the Leibnitz rule with respect to the Lie algebroid

bracket on L∗.

The underlying reason why l⊕ l∗ is a Lie bi-algebroid is that the (H-twisted) Courant

bracket belongs to a Courant algebroid structure. A Courant algebroid [8, 9, 5] is a vector

bundle E with a bilinear form 〈, 〉, a bracket [, ], and an anchor map π : E → TM obeying

π([X,Y ]) = [π(X), π(Y )] ∀X,Y ∈ C∞(E), (2.14)

[X, fY ] = f [X,Y ] + (a(X)f)Y + (π(X)f)Y − 〈X,Y 〉Df ∀X,Y ∈ C∞(E), f ∈ C∞(M)

〈Df,Dg〉 = 0 ∀f, g ∈ C∞(M)

π(X)〈Y,Z〉 − 〈[X,Y ] + D〈X,Y 〉, Z〉 + 〈Y, [X,Z] + D〈X,Z〉〉 ∀X,Y,Z ∈ C∞(E)

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] =
1

3
D(Nij(X,Y,Z)) ∀X,Y,Z ∈ C∞(E) ,

where

Nij(X,Y,Z) := 〈[X,Y ], Z〉 + 〈[Y,Z],X〉 + 〈[Z,X], Y 〉 , (2.15)

and D is a map C∞(M) → C∞(E) defined by the property 〈Df,X〉 = 1
2π(X)f ∀f ∈

C∞(M),X ∈ C∞(E). The Lie brackets on l and l∗ are obtained by restricting the (H-

twisted) Courant bracket, and the anchor maps are given by restricting the projection
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(TM ⊕ T ∗M) → TM. The important property is the last one in (2.14), because the

restriction of an (H-twisted) Courant algebroid bracket to an involutive maximal isotropic

subspace obeys the Jacobi identity, and is therefore a Lie bracket.

In this paper we will construct topological membrane models on almost generalized

complex geometries that obey integrability conditions with respect to brackets obtained by

general deformations of the Courant bracket by rank three tensors4:

[X + η, Y + ν]D =[X + η, Y + ν]C + k1HkijX
iY j + k2f

k
ijX

iY j (2.16)

− k2f
j
ik(X

iνj − Y iηj) − k3Q
jk

i (Xiνj − Y iηj)

+ k3Q
ij

k ηiνj + k4R
kijηiνj ,

where {k1, · · · , k4} is a set of parameters, and the position of the free indices denotes

whether the term lives in TM or T ∗M. The explicit integrability conditions for a general

J with respect to this bracket are given in appendix B. The bracket [, ]D is not a Courant

algebroid bracket if any combination of f , Q, and R is turned on, which is related to the

fact that these fluxes can not be understood as coming from some kind of a transform

analogous to (2.11). For example, whereas

[eb(X + η), eb(Y + ν)]C = eb[X + η, Y + ν]C + iY iXdb ≡ eb[X + η, Y + ν]H , (2.17)

for a transformation by a bivector β,

eβ(X + η) = X + η + iηβ , (2.18)

one doesn’t have an analogue of (2.17). That is,

[eβ(X + η), eβ(Y + ν)]C 6= eβ[X + η, Y + ν]D (2.19)

irrespective of which fluxes in [·, ·]D are turned on. One can also check that unless at

most the H flux is turned on, [·, ·]D is not a Courant algebroid bracket, in which case

the maximal isotropic subspaces of (TM⊕ T ∗M) ⊗ C involutive with respect to [, ]D are

not Lie algebroids, and the generalized Darboux theorem is no longer valid. Never the

less, as we discuss in section 5, a topological model on a target spaces with an almost

generalized complex structure integrable with respect to [, ]D corresponds to a Courant

algebroid structure on M. The topological model also places differential constraints on

the fluxes that resemble Bianchi identities. In the case of H-flux this is simply dH = 0,

a condition that is independent of any almost generalized complex structure and follows

from the requirement that [, ]H be a Courant algebroid bracket. The conditions on the

other fluxes do not seem to follow from a property of [, ]D alone. We emphasize that the

integrability conditions with respect to [, ]D are of importance to this paper because they

appear as consistency conditions for topological models with flux, but we do not claim to

understand the full mathematical significance of [, ]D at this stage.

4Twists by fluxes other than H have been considered in the formulation of generalized complex geometry

in terms of O(n, n) pure spinors in [34 – 37].
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3. Batalin-Vilkovisky formalism

The Batalin-Vilkovisky (BV) formalism is a general recipe for gauge fixing in the La-

grangian framework, which on one hand provides a procedure to obtain a gauge-fixed

action starting from a classical gauge theory, and furthermore gives a condition, known as

the quantum master equation, that must be satisfied in order for the observables and the

partition function to be independent of the gauge choice. It was introduced in [3, 4], and

enabled the quantization of gauge theories with open and reducible algebras, which could

not be handled using the BRST techniques available at the time. BV quantization encom-

passes BRST, and improves over it by uncovering the geometric structures involved in the

gauge fixing procedure. As we will show in detail, the construction of a gauge fixed action

involves doubling the field space by introducing a partner with opposite statistics, referred

to as an antifield, for every physical field and ghost field in the theory. The field-antifield

space has a canonical odd symplectic structure on it. In addition, an extended action S

that is nilpotent with respect to the odd symplectic structure needs to be constructed. A

supermanifold with an odd symplectic structure and a nilpotent vector field defines a BV

geometry, and it is in fact not necessary to start the construction from a classical gauge

invariant action, since any BV geometry will serve as a starting point for the definition of

a quantum theory. In particular, in the AKSZ procedure BV geometries are constructed

directly from classical geometries. In this section we review the standard approach to BV

quantization5, and in the next we will address the AKSZ approach. This will provide a

physical motivation for BV geometry, and is also necessary for understanding the content

of the topological theories constructed via AKSZ.

Suppose we have an action S0, that depends on a set of fields φi and is invariant under

a set of gauge symmetries labeled by a capital letter index,6

δφi = εARi
A , (3.2)

so,
←
δ S0

δφi
εARi

A = 0 . (3.3)

Gauge symmetries imply that the Hessian,

Hij :=

→
δ

δφi

←
δ S0

δφj
(3.4)

5For a thorough treatment the reader is referred to the review [38], or to [39, 40].
6Throughout this section we will be using the deWitt convention, where repeated indices imply not only

summation but also integration. In (3.2), for example, the transformation parameters εA are functions,

while Ri
A are really object that contain a (d-dimensional) δ-function, so:

ε
A
R

i
A ≡

Z

dzε
A(z)Ri

A(x− z) . (3.1)

In general, an object with n free indices in the deWitt notations stands for something with (n − 1) δ-

functions; for n = 0 we have a local integrated object. The deWitt notation is very useful when discussing

the BV formalism abstractly, without reference to a particular theory, but we will not use when discussing

specific constructions later in the paper.
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is not invertible on-shell, which can be seen by taking a functional derivative of (3.3).

This prevents the construction of the free propagator (given by the inverse of the Hessian

evaluated at some classical solution), and thus prevents a perturbative evaluation of the

path integral.

As in BRST, one introduces ghost fields cA, characterized by having opposite parity to

the gauge transformation parameters εA. We group the ghosts together with the original

φi under a collective field,

Φα = {φi, cA} , (3.5)

and for each Φα introduce a field with opposite statistics Φ∗α, called an antifield. Then an

extended action starting as

Smin = S0 + φ∗i c
ARi

A + · · · (3.6)

is constructed. The dots are completed by requiring Smin to be a solution to the master

equation

(Smin, Smin) = 0 , (3.7)

where (·, ·) is called the antibracket, and defines a canonical odd symplectic structure in

the space of fields and antifields (see appendix A for a list of defining properties of the

antibracket). Its action on two objects A and B that depend on Φ and Φ∗ is given by

(A,B) :=

←
δ A

δΦα

→
δ B

δΦ∗α
−

←
δ A

δΦ∗α

→
δ B

δΦα
. (3.8)

For reasons that will become clear shortly, Smin is called the minimal solution, and is the

central ingredient for constructing a gauge-fixed action.

For a symmetry algebra that is not reducible and closes on-shell the solution to the

master equation is given by

Smin = S0 + φ∗i c
ARi

A + c∗CN
C
ABc

AcB , (3.9)

where NC
AB are the (possibly field dependent) structure functions of the algebra. The

master equation reads

1

2
(Smin, Smin) =

←
δ S0

δφi
cARi

A + φ∗i

[
cA

←
δ Ri

A

δφk
cBRk

B + (−1)ǫφi
ǫ
cF Ri

FN
F
ABc

AcB
]

(3.10)

+ c∗D

[
2ND

AF c
ANF

GHc
GcH − cBcC

←
δND

BC

δφk
cARk

A

]
= 0 ,

where ǫ ∈ Z2 is zero when the field in its subscript is bosonic and one when it is fermionic.

The term independent of antifields expresses the invariance of the action, the term propor-

tional to φ∗ the closure of the algebra, while the term proportional to c∗ is related to the
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Jacobi identity7. Essentially, the antifields act as sources for the BRST transformations

obtained when quantizing a gauge theory with a closed and irreducible gauge algebra using

the standard BRST methods,

δBRSTφ
i := θcARi

A , δBRSTc
C := θNC

ABc
AcB , (3.12)

where θ is a global fermionic transformation parameter. The statement that δBRST is

nilpotent is equivalent to the statement that (3.16) is a solution to the master equation.

For open algebras, when the BRST procedure fails, the solution to the master equation

is characterized by terms non-linear in the antifields. Still, it is customary to refer to the

transformations that appear in the terms linear in antifields as BRST transformations,

even though for open algebras these transformations are nilpotent only on-shell.

Gauge fixing is achieved via a canonical transformation, that is, a transformation that

preserves the antibracket (3.8). An infinitesimal canonical transformation can be generated

by a fermionic function f(Φ,Φ∗) of fields and antifields as

Φ∗α → Φ∗α + (f(Φ,Φ∗),Φ∗α) , Φα → Φα + (f(Φ,Φ∗),Φα) , (3.13)

and it turns out that for the purposes of gauge fixing we can restrict to functions depending

only on fields, i.e. to canonical transformations acting only on antifields:

Φ∗α → Φ∗α + (Ψ(Φ),Φ∗α) , Φα → Φα . (3.14)

Ψ is referred to as the gauge fixing fermion. The minimal solution has a ghost number

symmetry, where the ghost numbers are conventionally assigned as

gh(φi) = 0 , gh(cA) = 1 , gh(Φ∗α) = −gh(Φα) − 1 . (3.15)

The antibracket increases ghost number by one, so in order for the canonical transfor-

mation to preserve ghost number it’s necessary that gh(Ψ) = −1. Such a fermion can’t

be constructed from the fields in the minimal solution, since these all have positive ghost

number. One therefore introduces auxiliary field pairs bA and λA with gh(bA) = −1 and

gh(λA) = 0, which can be used to construct an appropriate Ψ. The extended action with

the auxiliary fields reads

Sext = Smin + b∗Aλ
A , (3.16)

so on the auxiliaries the BRST transformation simply acts as

δBRSTb
A = λA , δBRSTλ

A = 0 . (3.17)

7There is a technical issue here, that rarely causes an obstruction to the BV procedure in practice [41, 42].

The Jacobi identity associated to a set of gauge transformations (3.2) that close on-shell is

R
i
D

0

@N
D
AF c

A
N

F
GHc

G
c
H

− c
B
c
C

←

δND
BC

δφk
c
A
R

k
A

1

A ≡ 0 . (3.11)

Therefore, this relation must be satisfied already at the level of the structure functions for the BV procedure

to work.
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For closed, irreducible algebras, gauge fixing via a canonical transformation (3.14) is equiv-

alent to adding the term δBRSTΨ to Sext, but for open algebras terms nonlinear in antifields

play a crucial role.

For irreducible algebras it is always possible to find a fermion such that the part of the

transformed extended action independent of antifields has a propagator. As things stand,

the procedure still fails for reducible algebras. This is fixed by requiring the minimal

solution to be proper, which means that the Hessian defined by

Hab :=

→
δ

δϕa

←
δ Sext

δϕb
(3.18)

has half its maximal rank on-shell. Here ϕa is a collective field that includes φi, cA, any

other ghost fields that need to be included for the solution to the master equation to be

proper, as well as the antifields for all these. One can show that for irreducible algebras a

minimal solution with the field content (3.5) that starts as (3.6) is indeed proper, while for

reducible algebras additional ghost fields need to be introduced. The properness condition

guarantees that, after a canonical transformation, one can find an action with a well defined

free propagator.

To summarize, the object that can be used as the starting point for defining the

quantum theory is

Sext(Φ
α,Φ∗α + (Ψ(Φ),Φ∗α)) , (3.19)

where Φα now includes the auxiliaries bA and λA. Furthermore, one can show that the

generating functional

Z[J,Φ∗α] =

∫
[dΦ] exp i(Wext + ΦαJα) (3.20)

obeys the naive Ward identity

Jα

→
δ Z[J,Φ∗α]

δΦ∗α
= 0 , (3.21)

provided that Wext obeys the quantum master equation

−i∆Wext +
1

2
(Wext,Wext) = 0 , (3.22)

where the ∆ operator is defined as

∆ := (−1)(ǫi+1)

←
δ

δΦ∗i

←
δ

δΦi
. (3.23)

By ’naive’ we mean that path integral quantities are manipulated as if they were classical

objects, without regard for regularization and renormalization; the ’naive’ results can be

spoiled by quantum anomalies. In particular, Wext should be thought of as depending

on some regularization parameter ǫ, such that when the limit ǫ → 0 is taken it becomes

infinite and Z[J ] finite. On the other hand the ∆ operator is singular when acing on local

functionals, and must be regularized if one is to make sense of equation (3.22). In the
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above we have set ~ = 1; if ~ was reintroduced the ∆ operator term in (3.22) would come

out proportional to ~, and should therefore be understood as a quantum correction.8

To demonstrate that the BV gauge fixing procedure makes sense one needs to show

that the quantum theory is invariant under infinitesimal deformations of the gauge fixing

fermion. And indeed one can argue, naively, that the partition function is invariant pro-

vided that (3.22) is satisfied (see any of [38 – 40] for the details). Furthermore, one can show

that the expectation value of an observable O is independent of the choice of Ψ provided

that

σ(O) = 0 , (3.26)

where σ is defined by

σO := (O,Wext) − i∆O , (3.27)

and formally obeys σ2 = 0 (clearly, this reduces to the invariance of the partition function

itself since σWext = 0 is just the quantum master equation). Due to the nilpotence of

σ, (3.26) is automatically true when O is of the form O = σF . It follows that quantum

observables are given by the cohomology classes of σ at ghost number zero, where the ghost

number requirement comes from considering the classical limit. In the classical limit the

∆ operator term vanishes, so σ reduces to the operator δBV,

δBVA := (A,Wext) , (3.28)

whose nilpotence follows directly from the Jacobi identity property of the antibracket (A.5).

The cohomology of δBV restricted to local functionals determines the deformations of the

classical action compatible with the symmetries of the theory (which in particular deter-

mines potential counterterms). Using the fact that gh(δBV) = 1, one can also show that

the cohomology of local functionals at ghost number one determines potential anomalies

in the theory [43, 40, 41].

4. The AKSZ construction of the A-model

The space of fields and antifields in BV quantization naturally holds an odd Poisson struc-

ture, and the gauge fixing procedure requires the existence of a functional S that obeys the

master equation (S, S) = 0. We will call any supermanifold (finite or infinite dimensional)

a P-manifold if it is equipped with an odd Poisson structure, and a Q-manifold if it is

equipped with an odd vector field

Q̂ := (·, S) (4.1)

8The ∆ operator is avoided when working with the effective action,

Γ[Φi
(c),Φ

∗

α] := −iZ[J,Φ∗] − JαΦα
(c) . (3.24)

where

Φα
(c) :=

−i
←

δ lnZ

δJα

(3.25)

Then (3.21) is equivalent to the effective action obeying the classical master equation (Γ,Γ)Φ(c)
= 0, where

the subscript indicates that the functional derivatives are with respect to Φi
(c).
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that obeys Q̂2 = 0 [44]. The latter is equivalent to the existence of a function(al) S obeying

(S, S) = 0. The space of fields and antifields is an examples of an infinite dimensional PQ-

manifold, that is, a supermanifold with both a P- and a Q-structure. An important example

of a finite dimensional PQ-manifold is the tangent bundle of a Poisson manifold M with

parity reversed fibers, which we denote as ΠTM. Taking Xi to be coordinates on M and

πi the odd coordinates on the fibers, the odd symplectic bracket is given by

(A,B) =

←
∂A

∂Xi

→
∂B

∂πi
−

←
∂A

∂πi

→
∂B

∂Xi
, (4.2)

and the Q-structure is obtained from

S =
1

2
P ij(X)πiπj . (4.3)

The master equation is satisfied if P ij defines a Poisson structure on M, i.e. if P
[ij
,kP

m]k = 0.

In the AKSZ construction [2] first a finite dimensional PQ-manifold P is constructed,

and then one makes use of a canonical PQ-structure on the space of maps from Σ̂ to P,

where Σ̂ = ΠTΣ, and Σ is an n-dimensional worldvolume. The Q-structure defines the

extended action of the topological model. In the standard BV construction one starts from

some classical physical action, so it is clear from the outset what the fields and the antifields

are. This is no longer the case in the AKSZ construction, instead the choice forms a part

of the definition of the theory. Geometrically it corresponds to a choice of Lagrangian

submanifold of the PQ-manifold, that is, a submanifold with half the maximal dimension

such that the odd symplectic form restricted to it vanishes. In the standard approach, in

order to respect the classical limit, it is crucial that the physical fields have ghost number

zero. This requirement can be dropped for topological theories, which in particular means

that it is not a priori necessary to introduce auxiliary pairs, and that there is no need to

restrict observables to have ghost number zero.

The target space for the A-model is the PQ-manifold ΠTM, where M is a Kähler

manifold, and for the B-model the target space is Π(T (0,1)M⊕T ∗(1,0)M) [2]. The quantum

consistency of the B model requires M to be Calabi-Yau, while the target space of the

A-model can be any Kähler manifold. The A- and B-models are special cases of a J -model,

which can be defined, at the classical level, on any generalized complex manifold [45]. For

the A- and B-models the generalized complex structure in question reduces to, respectively,

Jsym and Jcpx in (2.9). The PQ-manifold is constructed directly from the Lie bi-algebroid

structure (2.13) that corresponds to the generalized complex structure in question.

Let us take the local coordinates on ΠTΣ to be

z := {σ+, σ−, θ+, θ−} , (4.4)

where σ± are worldsheet light-cone coordinates and θ± the fermionic fiber coordinates.

The fields of the A-model, X(z) and π(z), are referred to as de Rham superfields. We

note that X(z) is a map ΠTΣ → M, while π(z) is a section of ΠT ∗Σ ⊗X∗(ΠTM). The
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P-structure is given by

(A,B) :=

∫
d2z




←
δ A

δXi(z)

→
δ B

δπi(z)
−

←
δ A

δπi(z)

→
δ B

δXi(z)


 , (4.5)

and the AKSZ action for the A-model is

S =

∫
d2z

(
1

2
ωij(X)πi(z)πj(z) +

1

4
ωijDX

i(z)DXj(z) + πiDX
i(z)

)
. (4.6)

where

d2z = dσ+dσ−dθ+dθ− . (4.7)

D is given by

D = θ+∂+ + θ−∂− , (4.8)

and obeys D2 = 0, while ωij is the Kähler form and ωij is its inverse. From now on we will

suppress the z dependence of X and π.

The action (4.6) has a ghost number symmetry, and we assign

gh(X) = 0 , gh(π) = −1 and gh(θ±) = 1 , (4.9)

so that gh(D) = 1, gh(d2z) = −2, and gh(S) = 0. The de Rham superfields can be

expanded in terms of the worldsheet superspace coordinates as

Xk = φk + θ−π+k
∗ + θ+π−k

∗ − θ+θ−χk
∗ , (4.10)

πk = χk + θ−π−k + θ+π+k + θ+θ−φ∗k ,

where we have made an initial choice which component fields are to be treated as fields

and which as antifields. The odd symplectic form is given by:

(A,B) =

∫
d2z

(←
δ A

δφi

→
δ B

δφ∗i
−

←
δ A

δφ∗i

→
δ B

δφi
−

←
δ A

δχi

→
δ B

δχi
∗

+

←
δ A

δχi
∗

→
δ B

δχi
(4.11)

+

←
δ A

δπ−i

→
δ B

δπ−i
∗

−

←
δ A

δπ−i
∗

→
δ B

δπ−i
−

←
δ A

δπ+i

→
δ B

δπ+i
∗

+

←
δ A

δπ+i
∗

→
δ B

δπ+i

)
.

Integrating over the fermionic coordinates in (4.6) we obtain the extended action:

S =

∫
d2σ

(
1

2
ωij∂+φ

i∂−φ
j + π+i∂−φ

i − π−i∂+φ
i + ωijπ+iπ−j (4.12)

+π+k
∗

[
∂+χk − ω

ij
,kχiπ+j

]
+ π−k

∗

[
−∂−χk + ω

ij
,kχiπ−j

]

+ φ∗jω
jiχi −

1

2
χl
∗ω

ij
,lχiχj +

1

2
π+l
∗ π
−m
∗ ω

ij
,lmχiχj

)
.

In terms of the standard BV construction described in section 3, the first line corresponds

to the classical action, χk are the ghost fields, and the gauge symmetry transformations
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can be read off from the terms linear in π∗ and φ∗. The term quadratic in the antifields is

present due to the algebra of these symmetries closing only on-shell.

The action of the form (4.6), but with the ωij term set to zero and ωij taken to be

a general Poisson structure, is known as the Poisson σ-model. The choice of Lagrangian

submanifold in (4.10) is in fact the correct one for the quantization of topological models

related to deformation quantization [46 – 49]. To obtain the gauge fixed action one needs

to introduce auxiliary pairs and construct a gauge fixing fermion much like for standard

gauge theories. For the p-brane generalizations of the Poisson σ-model see [50].

Auxiliary pairs are not needed to define the A-model, but it is necessary to make a

more refined choice of a Lagrangian submanifold than (4.10) by making use of an almost

complex structure on the target manifold (in what follows we take this structure to be

actually complex),

π+α → ψ−∗α π+α → π+α π−α → ψ+
∗α π−α → π−α (4.13)

π+α
∗ → ψα

− π+α
∗ → π+α

∗ π−α
∗ → ψα

+ π−α
∗ → π−α

∗ ,

referred to holomorphic coordinates. After making the replacements (4.13) in the extended

action (4.12) and integrating out the auxiliary fields π+α and π−β one obtains the extended

action of the A-model9:

S =

∫
d2σ

(
i

2
gij∂+φ

i∂−φ
j + χν(∂+ψ

ν
− + Γν

αβ∂+φ
αψ

β
−) (4.14)

− χν(∂−ψ
ν
+ + Γν

αβ
∂−φ

αψ
β
+) − iR

αβ
κνψ

κ
−ψ

ν
+χαχβ

+ iφ∗νg
νκχκ − iφ∗νg

νκχκ + ψ−∗β(∂−φ
β + iΓββ

αψ
α
−χβ)

− ψ+
∗β

(∂+φ
β − iΓββ

αψ
α
+χβ) + iχα

∗Γ
νκ

αχνχκ + iχα
∗Γ

κν
αχνχκ

+ igαβψ−∗αψ
+
∗β

)
.

In the AKSZ formulation the fields χ naturally have a downstairs index, whereas in the

twisting procedure the index is naturally upstairs [2, 51]. In the latter formulation one can

associate χi with the differentials dzi on the target space, and one has simply δφi = χi and

δχi = 0 under BRST transformations. In the AKSZ formulation gijχj is associated with

dzi, and this is the reason why χi doesn’t transform trivially, as can be gathered from the

presence of terms linear in χ∗ in (4.14).

Finally, let us point out some subtleties in the AKSZ construction. The A-model action

obtained from the twisting procedure is characterized by the fact that its bosonic part is

purely real, assuming that we take the action of the (2, 2) untwisted model to be real, due

to the fact that the twisting leaves bosonic fields invariant. Our conventions differ by an

inessential factor of i, so the bosonic part of (4.14) comes out purely complex. Now, the

second term in (4.6) is just the pullback of ω to the worldsheet
∫
d2zωijDX

iDXj =

∫
d2σωij∂+φ

i∂−φ
j , (4.15)

9We are using the convention ωαβ = −igαβ, where gij is the Kähler metric.
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so it is topological, and the master equation is satisfied irrespective of its presence. However,

its coefficient is determined if we require the bosonic part of the action to be purely complex.

There is a similar issue related to the role of a gauge fixing fermion. Following from (4.9),

the component fields have the ghost numbers

gh(χi) = 1 , gh(ψα
+) = gh(ψα

−) = −1 , gh(φi) = gh(π+α) = gh(π−α) = 0 , (4.16)

so a general gauge fixing fermion that is of second order in the fields, constructed using

the Kähler metric, has the form:

Ψ =

∫
d2σigαβ(∂−φ

αψ
β
+ + ∂+φ

βψα
−) . (4.17)

Starting from an action like (4.6), but with the πiDX
i term having a coefficient other than

one, it would be necessary to perform a canonical transformation generated by a fermion

proportional to (4.17) in order to obtain the A-model action. However, if we start from

precisely (4.6) no canonical transformation is necessary.

4.1 Invariance of the A-model under b-transforms

Under a b-transform (2.11) the fields of the A-model transform as

Xi → Xi πi → πi + bijDX
j . (4.18)

One can check that this is a canonical transformation of the antibracket (4.5) provided

that db = 0. The A-model action (4.6) is not invariant under (4.18), but rather transforms

to a special case of the Zucchini action [6]:

S =

∫
d2z

[(
−bij +

1

2
Lij

)
DXiDXj + πiDX

i + J i
jπiDX

j +
1

2
P ijπiπj

]
. (4.19)

The Zucchini action is a solution to the master equation provided the tensors satisfy the

first three conditions in appendix B with all the flux terms set to zero. Thus, the model can

be defined on any manifold with a generalized complex structure, but the actual conditions

coming from the master equation are weaker. In detail, we have

(S, S) ≡

∫
d2z

(
Sijkπiπjπk + V

jm
k DX

kπjπm + T k
ij DXiDXjπk

)
= 0 . (4.20)

The condition Wijk = 0 doesn’t feature because it involves a contraction with (DX)3,

which is identically zero.

For the b-transform of (4.6) we have

P ij = ωij , J i
j = ωimbmj and Lij =

1

4
ωij +

1

2
ωmpbimbjp . (4.21)

Because (4.18) is a canonical transformation, one can choose the same Lagrangian subman-

ifold as for the A-model before the b-transform (see (4.11) and (4.13)). Writing out (4.18)

in components reveals that it transforms both fields and antifields, so it is not a canonical
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Field Parity Ghost number

Ai fermion 1

Bi boson 2

Yi boson 2

Y i
∗ boson - 3

Zi fermion 1

Z∗i fermion -2

Table 1: The field content of three of the AKSZ membrane action.

transformation generated by a gauge fixing fermion that depends only on fields. However,

it turns out that a canonical transformation generated by

Ψ =

∫
d2σ

(
−bαβ(∂−φ

αψ
β
+ + ∂+φ

βψα
−) − bαβ∂−φ

αψβ + bαβ∂+φ
αψ

β
−

)
(4.22)

undoes the action of the b-transform, but only after integrating over the auxiliary fields

π+α and π−β. If there was an obstruction to integrating out the auxiliaries, and we argue

in section 7 that this can happen when one introduces a gauge fixing fermion that depends

on H-flux, then the impact of a transform by a closed b-field should be examined more

carefully.

5. The three dimensional A-type model

In this section we consider a class of topological membrane models that naturally include

the H-, f -, Q- and R-fluxes that were introduced in (2.16), and reduce to the Zucchini

model (4.19) when the fluxes are turned off [18]. This is possible because the membrane is

assumed to have a boundary, and in the absence of fluxes the AKSZ action becomes a total

derivative. The Zucchini model itself reduces to the A-model when the generalized complex

structure is given by Jsym, but it does not reduce to the B-model when the generalized

complex structure is Jcpx (see (2.9)). The reason why the A- and B-models can not be

special cases of the same AKSZ action, at least for general dimension of the target space,

is explained in [45]. B-type membrane models are also discussed in [18].

Let us first rewrite the standard A-model AKSZ action (4.6) in three dimensions, by

acting on it with the D operator. The maps from the worldsheet can be extended to maps

from a membrane that has the worldsheet as its boundary, and the action obtained by

integrating this Lagrangian over the membrane superfield coordinates is equivalent to the

original A-model via Stokes’ theorem. To obtain a BV structure in three dimensions it is

necessary to introduce the fields listed in table 1. The AKSZ membrane action is given by

S =

∫
d3y

(
1

2
ω

ij
,kA

kπiπj − ωijBiπj −
1

2
DXiBi +

1

2
DπiA

i (5.1)

+(Ai −DXi)Yi + (Bi +Dπi)Z
i +O(Z∗) +O(Y∗)

)
,
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and the antibracket by

(F,G) =

∫
d3y

(←
δ F

δXi

→
δG

δBi
−

←
δ F

δBi

→
δ G

δXi
+

←
δ F

δAi

→
δ G

δπi
+

←
δ F

δπi

→
δG

δAi
(5.2)

+

←
δ F

δYi

→
δG

δY i
∗

−

←
δ F

δY i
∗

→
δG

δYi
+

←
δ F

δZi

→
δG

δZ∗i
+

←
δ F

δZ∗i

→
δG

δZi

)
.

As one can see, Bi and Ai play the role of antifields to Xi and πi, respectively. The

field-antifield pairs have the same parity because the measure of the three dimensional

superspace is fermionic. The superspace coordinates on the membrane are denoted by y,

and d3y is the fermionic measure. Eliminating the Lagrange multipliers Y and Z yields

the total derivative action that reduces to the A-model on the boundary of the membrane.

In (5.1) O(Z∗) and O(Y∗) denote terms that involve the antifields of Z and Y , which we do

not write down explicitly. Let us denote the part of the action in the first line of (5.1) as

S(1), and the part of the action in the second line, excluding the O(Z∗) and O(Y∗) terms,

as S(2). Then (S(1), S(1)) = 0, provided that ωij is a Poisson structure, and (S(2), S(2)) = 0.

However, (S(1), S(2)) 6= 0, and one needs to introduce the O(Z∗) and O(Y∗) terms in such

a way the part of the full master equation coming from (S(1), S(2)) is cancelled. The

completion of the extended action is straightforward but lengthy, and requires a repeated

use of the Poisson structure condition.

S(1) is a special case of an AKSZ membrane action that can be associated to a Courant

algebroid on the bundle TM⊕ T ∗M:

SC =

∫
d3y

(
−

1

2
DXiBi +

1

2
DπiA

i − f
ij
(1)Biπj − f i

(2)jBiA
j (5.3)

F(1)ijkA
iAjAk + F k

(2)ijA
iAjπk + F

ij
(3)kA

kπiπj + F
ijk
(4) πiπjπk

)
.

The conditions for SC to satisfy the master equation can be grouped into three sets [11, 16]:

f
(i
(2)mf

p)m
(1) = 0 , (5.4)

f
i[j
(1),mf

s]m
(1) + F

js
(3)mf

im
(1) + 3f i

(2)mF
jsm
(4) = 0 (5.5)

f
ij
(1),mf

m
(2)s − f i

(2)s,mf
mj
(1) + 2f i

(2)mF
jm
(3)s − 2F j

(2)smf
im
(1) = 0

f i
(2)[j,|m|f

m
(2)s] − f i

(2)mF
m
(2)js − 3F(1)jsmf

im
(1) = 0 ,

and

F
[ijk
(4) ,m

f
s]m
(1) + 3F

[ij
(3)mF

ks]m
(4) = 0 (5.6)

F
[ij
(3)k,m

f
s]m
(1) + F

ijs
(4) ,m

fm
(2)k + 2F

[ij
(3)mF

s]m
(3) k

− 6F
[i
(2)km

F
js]m
(4) = 0

F
[k
(2)ijmf

s]m
(1) − F ks

(3)[i,|m|f
m
(2)j] + 9F(1)ijmF

ksm
(4) − 4F

[k
(2)m[iF

s]m
(3) j] + F ks

(3)mF
m
(2)ij = 0

−F(1)ijk,mf
ms
(1) + F s

(2)[ij,|m|f
m
(2)k] + 6F(1)[ij|m|F

sm
(3)k] + 2F s

(2)m[iF
m
(2)jk] = 0
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3F(1)[ij|m|F
m
(2)pr] − F(1)[ijp,|m|f

m
(2)r] = 0 .

Including the S(2) term, one again needs to complete the extended action with O(Z∗)

and O(Y∗) terms, and solving the full master equation involves a repeated use of the

above conditions. The correspondence between AKSZ membrane actions and Courant

algebroids (2.14) was pointed out in [14, 15, 52], and has subsequently been studied ex-

tensively [9, 11, 10, 16]. The details of this correspondence for the bundle TM ⊕ T ∗M

are as follows: Ai and πi are coordinates along the fiber directions of ΠTM and ΠT ∗M

respectively, the anchor map is given by

π(Ai)Xj = f
ij

(1) , π(Bi)X
j = −f j

(2)i , (5.7)

and there is an operation ◦ defined as

Ai ◦ Aj = −2F ij
(3)kA

k − 6F ijk
(4) πk (5.8)

Ai ◦ πj = −2F i
(2)jkA

k + 6F ik
(3)jπk

πi ◦ πj = −6F(1)ijkA
k − 2F k

(2)ijπk ,

from which the Courant algebroid bracket is obtained by antisymmetrization10

[e1, e2] =
1

2
(e1 ◦ e2 − e2 ◦ e1) . (5.9)

The coefficients in the above equations were chosen to agree with the conventions in [16].

In an action corresponding to a Courant algebroid on a general product vector bundle

V ⊕ V ∗ the B fields would take values in the fiber coordinates of T ∗M, while the A and π

fields would take values in the fiber coordinates of ΠV and ΠV ∗ respectively. The action

associated with a Courant algebroid on a general vector bundle E would contain the B

fields, and A fields which take values in the fiber coordinates of ΠE, but it would not

contain the π fields [10].

For the purpose of constructing a flux deformation of the Zucchini action the target

space must be an almost generalized complex manifold. We therefore take

f
ij
(1) = P ij and f i

(2)j = J i
j , (5.10)

and then equation (5.4) is just the second condition in (2.4). Furthermore, we wish to

reproduce the integrability conditions of the almost generalized complex structure with

respect to a Courant bracket deformed by not only H-flux, but also by f -, Q- and R-

fluxes (2.16). This is achieved by taking

F(1)ijk =
1

2

(
L[ij,k] + H̃ijk

)
F k

(2)ij = Jk
[i,j] +

1

2
f̃k

ij (5.11)

F
ij

(3)k =
1

2

(
P

ij
,k + Q̃

ij
k

)
F

ijk

(4) =
1

2
R̃ijk ,

10One can check that the conditions (2.14) are equivalent to (5.4), (5.5), and (5.6). In fact, a Courant

algebroid can be defined in two equivalent ways, either in terms of [, ] or ◦ [9].
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where

H̃ijk = − k1J
m
[iHjk]m − k2Lm[if

m
jk] + k2Lm[iJ

p
jJ

s
k]f

m
ps − k3Lm[kL|s|iJ

p
j]Q

sm
p (5.12)

−
1

3
k4LimLjpLksR

mps

f̃k
ij = k1P

kmHmij + k2J
k
mf

m
ij + 2k2J

m
[if

k
j]m − k2J

k
mJ

p
iJ

s
jf

m
ps + 2k2P

mkLp[iJ
s
j]f

p
sm

− 2k3Lp[jQ
pk

i] + 2k3Lm[iJ
p

j]J
k
sQ

ms
p − k3P

pkLmiLsjQ
sm

p − k4LimLjpJ
k
sR

mps

Q̃
ij

k = 2k2J
[i
mP

j]pJs
kf

m
ps − k2LkmP

piP sjfm
ps − 2k2P

m[jf
i]
mk − k3J

m
kQ

ij
m

+ k3J
[i
mJ

j]
pJ

s
kQ

mp
s − 2k3LkmJ

[i
pP

j]sQmp
s − 2k3J

[i
mQ

j]m
k

− k4J
i
mJ

j
pLskR

mps + k4LmkR
ijm

R̃kij = − k2J
[k
mP

i|p|P j]sfm
ps + k3P

m[kQij]
m − k3J

[k
mJ

i
pP

j]sQmp
s

−
k4

3
Jk

mJ
i
pJ

j
sR

mps + k4J
[k
mR

ij]m .

The conditions in (5.5) become the first three conditions in appendix B. It is not obvi-

ous how the higher order conditions (5.6) should be obtained from the deformed Courant

bracket, except for the H-twisted case, when satisfying (5.5) requires dH = 0, which

is also the condition obtained by requiring the H-twisted bracket to be a Courant alge-

broid bracket. For the particular examples we discuss in the next section (5.5) express

differential conditions that resemble Bianchi identities. For standard and H-twisted gen-

eralized complex structures, the Courant algebroid structure defined by the topological

membrane, (5.8), is related to the Lie bi-algebroid structure referred to after (2.13), by

a correspondence between Lie bi-algebroid and Courant algebroid structures given in [5].

This in particular means that the Courant bracket defined by the antisymmetrization of

◦ (5.9) doesn’t correspond to the standard Courant bracket on T ⊕ T ∗ (2.6).

Unless the fluxes are turned off, SC is not a total derivative after the Lagrange multi-

pliers Y and Z are integrated out. For the case with H-flux only it is still possible to work

with a two dimensional model on an H-twisted generalized complex target space. When

the b-field is not closed, the odd symplectic structure (4.5) gets deformed to

(F,G)H = (F,G) −

∫
d2zDXiHijk

→
δ F

δπj

→
δG

δπk
(5.13)

under a b-transform (4.18), where we take H = 3db, and the master equation for the

Zucchini action (4.19) with respect to (, )H reads

∫
d2z

(
Sijkπiπjπk + V

jm
k DX

kπjπm + T k
ij DXiDXjπk

)
= 0 , (5.14)

with S, V , and T in appendix B evaluated with k1 = 1 and k2 = k3 = k4 = 0. So,

the master equation is satisfied with respect to the H-twisted bracket if the target space

carries an H-twisted generalized complex structure, but as in the untwisted case (4.20),

the conditions coming from the master equation are weaker since Wijk = 0 doesn’t feature.

The problem when working with the twisted bracket is that one meets a rather serious
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technical difficulty in implementing the gauge fixing. Namely, it is completely unclear how

to pick out a Lagrangian submanifold with respect to the odd symplectic structure (5.13),

due to the fact that (πi, πj)H 6= 0, so X and π are no longer conjugate variables.11 The

great advantage of the AKSZ membrane models is that this problem is avoided, since the

standard BV bracket (5.2) is used. In particular, for flux deformations of the A-model one

can use the same Lagrangian submanifold as for the three dimensional rewriting of the

standard A-model (5.1).

We do not have a generalization of the twisted Zucchini model in two dimensions

when the f -, Q- and R-fluxes are turned on, related to the fact that these fluxes can not

be obtained via some generalization of the b-transform. Two dimensional AKSZ actions

have a correspondence with Lie algebroids (2.13) [53, 54, 16]. As we mentioned, the J -

models of [45] are constructed from Lie bi-algebroids, and in [5] it is shown that one can

always construct a Courant algebroid from a Lie bi-algebroid. At the level of AKSZ this

corresponds to the membrane action for the A-type model without flux becoming a total

derivative. The fact that in the presence of f - Q- and R-fluxes the membrane actions can

not be reduced to two dimensions indicates that the corresponding Courant algebroids can

not be constructed from Lie bi-algebroids.

6. Topological models on almost complex manifolds

In this section we consider examples of U(m) and U(m) × U(m) structure manifolds with

flux which are good target spaces for the type of topological membrane model discussed

in the previous section. We will in particular be interested in geometries for which the

Nijenhuis tensor of the almost complex structure(s) doesn’t vanish. There are two types of

membrane models one can consider for each structure group. For U(m) one has models as-

sociated with Jsym, and Jcpx, and for U(m)×U(m) models associated with J(±) (see (2.9)

and (2.10)). We will mainly be interested in Jsym and J(−), since these are the flux gener-

alization of the A-model, while Jcpx and J(+) are not related to the B-model [45]. In the

previous section it was shown the AKSZ membrane action satisfies the master equation

provided that the generalized complex structure in question is integrable with respect to

11Expanding (S, S)H in components reveals that the parts that come from the H-dependent deformation

of the usual antibracket all depend on the auxiliary fields. This leaves some hope that one may be able to use

the same Lagrangian submanifold as in the case without flux, and that the extended action obtained after

integrating out the auxiliaries may satisfy the master equation with respect to the standard antibracket.

One can easily check that this doesn’t work. If we close our eyes and perform the gauge fixing as in

the standard A-model, after performing a b-transform with 3db = H the extended action of the standard

A-model SA (4.14) transforms to

S =SA +

Z

d
2
σi

“

−H
α
βνψ

ν
−
χα∂+φ

β +H
α
βνψ

ν
+χα∂−φ

β +H
α

βν
ψ

ν
−
χα∂+φ

β
−H

α

βν
ψ

ν
+χα∂−φ

β (5.15)

−H
α

βν
ψ

ν
−
χα∂+φ

β +H
α

βν
ψ

ν
+χα∂−φ

β +H
α
βνψ

ν
−
χα∂+φ

β
−H

α
βνψ

ν
+χα∂−φ

β
”

.

Thus, the change is proportional to H and occurs only in the part of the action independent of antifields.

It is easy to check that this extra contribution isn’t invariant under the BRST transformations of the A-

model, and therefore the master equation with respect to the standard antibracket is not satisfied in the

part independent of antifields.

– 20 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
3

the deformed Courant bracket (2.16), and provided that the differential constraints on the

fluxes (5.6) are satisfied. First we will examine geometries inspired by (1, 1) supersymmet-

ric σ-models, for which the torsion of the connection that preserves the almost complex

structure(s) is related to the H-flux, and the almost complex structures are responsible

for additional supersymmetries of the σ-model. When the Nijenhuis tensor of the almost

complex structures doesn’t vanish, for the U(m) geometries one must turn on the f -flux in

the topological model, and for the U(m) × U(m) geometries the H-, f - and R-fluxes. The

f - and R-fluxes are obtained by raising the indices of the 3-form H. We also consider U(m)

structure manifolds for which the torsion is not related to H, and is not totally antisym-

metric. We show that all the conditions on the fluxes are satisfied for the σ-model inspired

geometries, while for the more general U(m) cases we obtain additional constraints on the

torsionful Riemann tensor, and show that these are satisfied for three explicit examples of

half-flat manifolds.

The action for the (1, 1)-supersymmetric σ-model is given by

S =

∫
d2z (gij + bij)D+X

iD−X
j , (6.1)

where X is a map from (1, 1) superspace with coordinates z = {σ+, σ−, θ+, θ−} to a chart

in the target space manifold, g is the metric on the target space, 3db = H, and D+ and

D− are supercovariant derivatives obeying:

D2
+ = i∂++ D2

− = i∂−− {D+,D−} = 0 . (6.2)

Second supersymmetries in the (1, 1) formulation take the form

δI+X
i = ε+I i

(+)jD+X
j δI−X

i = ε−I i
(−)jD−X

j , (6.3)

with the conditions that I i
(+)j and I i

(−)j are almost complex structures and that they are

covariantly constant with respect to two torsionful connections,

∇(±)I(∓) = 0 , (6.4)

whose respective connection coefficients are

Γ
i(±)
jk := Γi

jk ±
1

2
H i

jk . (6.5)

The conditions on the parameters ε± for the transformations (6.3) to be symmetries are

D∓ε
± = 0 , (6.6)

so ε± can be taken to depend on half the worldsheet superspace coordinates.

If one requires the algebra of the second supersymmetries to be the standard N = (2, 2)

algebra, I(±) are required to be complex and the model is said to have (2, 2) supersymme-

try.12 The geometries that we want to consider are characterized by at least one almost

12See [55, 21, 56, 27] for a formulation of (2, 2) σ-models with manifest (1, 1) supersymmetry that involves

auxiliary superfields and is more natural in the context of the TM ⊕ T ∗M bundle. A formulation with

manifest (2, 2) supersymmetry in the context of generalized geometry is given in [24 – 30].
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complex structure, and this implies that the N = (2, 2) algebra is deformed by a non-linear

symmetry related to the Nijenhuis tensor [57]. Schematically the (+) sector of the standard

N = (2, 2) algebra can be written as:

{δI+ , δI+} ∝ δg , {δI+ , δg} ∝ δI+ , {δg, δg} ∝ δg , (6.7)

where δg is the superconformal transformation,

δgX
i = ε++

g ∂++X
i −

i

2
D+ε

++
g D+X

i . (6.8)

The deformation enters in the {δI+ , δI+} commutator

{δI+ , δI+} ∝ δg + δN+ , (6.9)

where

δN+X
i = ε++

N N i
(+)jkD+X

jD+X
k , (6.10)

and N(+) is the Nijenhuis tensor associated with I(+). N(+) is covariantly constant with

respect to ∇(−), which follows from the closure of the algebra and can also be verified

explicitly [57, 42]. Replacing the partial derivatives in the Nijenhuis tensor using the

covariant constancy of I(+) yields,

N(+)ijk = Hijk − 3Ip
(+)[iI

s
(+)jHk]ps , (6.11)

which just expresses that N(+)ijk is the (3, 0)+ (0, 3) component of H with respect to I(+).

Analogous equations can be written in the (−) sector, and the symmetries in the (+) and

(−) sectors commute.

When H-flux is turned on it is possible to include only one second worldsheet su-

persymmetry, which means that the target space admits an almost complex structure

covariantly constant with respect to, say, only ∇(+), but no almost complex structure co-

variantly constant with respect to ∇(−). Such models are called (2, 1) σ-models when the

almost complex structure is actually complex. To distinguish the different possibilities, we

introduce the following notation. For (2∗, 1) models there exists a second supersymmetry

corresponding to an almost complex structure I(−) such that ∇(+)I(−) = 0, and the algebra

in the (−) sector is deformed by the Nijenhuis tensor symmetry (6.10). For (2∗, 2) models

there are two second supersymmetries, one corresponding to a non-integrable I(−), and the

other to an integrable I(+). For (2∗, 2∗) models neither I(−) nor I(+) are integrable.

An interesting point about the covariant constancy of N is that it implies the reduction

of the structure group. Consider, for example, the (2, 1)-model in three complex dimen-

sions. The covariant constancy of I implies that the structure group is reduced from SO(6)

to U(3). For the (2∗, 1)-model the covariant constancy of N implies that the structure

group is automatically reduced to SU(3). Furthermore, for n > 3 the structure group

reduces to a product group [42].

From the invariant tensors of a geometry with U(m) structure one can construct two

almost generalized complex structures Jcpx and Jsym (2.9). The question we need to answer
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in order to construct the topological models is: what are the constraints on the parameters

in (2.16) such that Jcpx and Jsym are integrable with respect to [, ]D, provided that the

U(m) tensors are covariantly constant with respect to some torsionful connection ∇(T )?

It turns out that when Ii
j is almost complex Jcpx and Jsym are integrable with respect

to (2.16) with k2 = 1, and all the other parameters set to zero, where we take the torsionful

connection to be13

Γ
i(T )
jk = Γ

i(sym)
jk +

1

2
T i

jk , (6.13)

and we associate

f i
jk = T i

jk (6.14)

in (2.16). We are essentially twisting the original Courant bracket by torsion. When the

torsion is totally antisymmetric, as is the case for H in the σ-model described above, one

needs to take T i
jk = −H i

jk when I is covariantly constant with respect to ∇(−). Of course,

Jcpx and Jsym are also integrable with respect to this bracket when Ii
j is actually complex.

For the complex case with torsion obtained from H, it turns out that one can consider

a more general deformed bracket. Namely, Jcpx is actually integrable with respect to a

Courant bracket with arbitrary parameters in (2.16) turned on, and Jsym is integrable

when k4 = 1, k3 = −k1, and k2 = 0. The f - Q- and R-fluxes are all obtained by raising

the indices of the three-form H.

In bi-Hermitian geometry [23], which corresponds to the (2, 2) σ-model, a pair of

complex structures are present, I(∓), covariantly constant with respect to ∇(±) (6.5). As

mentioned in section 2, this geometry can be expressed in terms of two generalized complex

structures (2.10),

J(±) =

(
I i
(+)j ± I i

(−)j −(Iij
(+) ∓ I

ij
(−))

I
(+)
ij ∓ I

(−)
ij −(I

(+)i
j ± I

(−)i
j )

)
, (6.15)

which are integrable with respect to the standard H-twisted bracket (2.12). If one con-

siders integrability conditions with respect to a deformed bracket (2.12) it is possible to

accommodate a more weakly constrained geometry, namely one with either I(+) or I(−)

almost complex. If we take I(+) to be almost complex, J(±) are integrable with respect to

the bracket (2.16) with k1 = 1, k2 = k4 = −1
2 , and when I(−) is almost complex one needs

to take k1 = 1, k2 = k4 = 1
2 . J(±) are not integrable with respect to any deformed bracket

when both I(+) and I(−) are only almost complex. The fluxes are again obtained by raising

the indices of H. In this paper we will not consider U(m)× U(m) geometries with torsion

that is not totally antisymmetric.

Next we consider the differential conditions on the fluxes for the U(m) A-type topo-

logical model, that is, the one associated with Jsym integrable with respect to (2.16) with

k2 = 1, f i
jk = T i

jk, and all the other fluxes set to zero. In this case F(2) and F(4) vanish,

13Γ(sym) is not equal to the Levi-Civita connection unless Tijk is totally antisymmetric. Rather Γ(T ) =

ΓL.C. + κ, where κ is the contorsion, and the relation between contorsion and torsion is

κ
i
jk =

1

2
(T i

jk + T
i

j k + T
j

i k) T
i
jk = 2κi

[jk] . (6.12)
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and the only non-trivial constraint is the one in the second line of (5.6), which simplifies

to

F
[ij
(3)k,m

f
s]m
(1) + 2F

[ij
(3)mF

s]m
(3) k

= 0 , (6.16)

with F(3)k,m defined in (5.11) and (5.12) with P ij = Iij , Lij = Iij , and J i
j = 0. (6.16) can

be expressed in terms of the Riemann tensor of the torsionful connection

R
i(T )
jkl = Γ

i(T )
lj,k − Γ

i(T )
kj,l + Γ

m(T )
lj Γ

i(T )
km − Γ

m(T )
kj Γ

i(T )
lm (6.17)

as

3Im
[iI

p
jR

(T )
s][mpk] + I

p
kI

r
[iI

v
jI

m
s]R

(T )
prvm = 0 , (6.18)

which in a holomorphic frame reads:

R
(T )
τ [αβγ] = 0 , R

(T )

τ [αβγ]
= 0 . (6.19)

By definition, on a manifold of SU(3)-structure there exists an invariant holomorphic form

Ω

R
τ(T )
[α|βγ|Ωµν]τ = 0 . (6.20)

which is equivalent to

R
(T )
τ [αβγ] + 2R

(T )
[αβ
gγ]τ = 0 , (6.21)

This means that for the SU(3) case (6.19) is equivalent to

R
(T )
[αβ] = 0 . (6.22)

For the σ-model case the torsion is given by H i
jk, and dH = 0, so one has the identity:

R
(T )
i[jkl] = ∇

(T )
i Hjkl . (6.23)

Then (6.19) implies that the (3, 0) and (0, 3) components of the H- field are covariantly

constant with respect to the torsionful connection, which is true, as we pointed out in the

context of equation (6.10).

For the U(m) × U(m) geometries (6.15) based on the σ-model the analysis is more

elaborate than for the U(m) cases, but the end result is similar. Namely, the covariant

constancy of the Nijenhuis tensors associated with I(+) and I(−) is sufficient to satisfy the

differential conditions on the fluxes.

For U(3) geometries for which the torsion is not totally antisymmetric the above ar-

gument is no longer valid. In what follows we demonstrate that (6.19) is satisfied for three

explicit examples of half-flat manifolds, all of which are described in detail in [58]. We

remind the reader that a half-flat manifold is an SU(3)-structure manifold [59] for which

the following torsion classes vanish:

W−1 = W−2 = W4 = W5 = 0 , (6.24)

where the minus denotes the imaginary part, which is equivalently expressed as

I ∧ dI = dΩ− = 0 . (6.25)
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These manifolds are in general neither complex (W1 = W2 = 0) nor Kähler (W1 = W2 =

W3 = W4 = 0).

The first case in question is the Iwasawa manifold [60, 61], for which only W3 is non-

zero (so it is in fact complex), and the metric is given by:

ds2 =

4∑

i=1

(dxi)2 + (dx5 + x1dx4 − x3dx2)2 + (dx6 − x1dx3 − x4dx2)2 . (6.26)

Iij has the following form for all three geometries,

I = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 , (6.27)

where for the Iwasawa manifold:

ej = dxj , j = 1, . . . , 4 , (6.28)

e5 = dx5 + x1dx4 − x3dx2 ,

e6 = dx6 − x1dx3 − x4dx2 .

The second case, referred to as the {W+
1 ,W

+
2 } Iwasawa manifold, is obtained by making

the replacement

(dx5 + x1dx4 − x3dx2) → (dx5 − x1dx4 + x3dx2) (6.29)

in both (6.26) and e5, and has W3 = 0 but W+
1 and W+

2 non-zero. For the third case W+
1 ,

W+
2 , and W3 are all non-zero, the metric is given by

ds2 =
4∑

i=1

(dxi)2 + (dx5 − x1dx4 + x3dx2)2 + (dx6 − x4dx2)2 , (6.30)

and

ej = dxj , j = 1, . . . , 4 , (6.31)

e5 = dx5 − x1dx4 + x3dx2 ,

e6 = dx6 − x4dx2 .

With this information the contorsion can be calculated by making use of the identity

κi
jk = −

1

2
Ii

m∇L.C.
j Im

k . (6.32)

We were able to check explicitly that (6.19) holds for all three of the above geometries.14

On the {W+
1 ,W

+
2 } Iwasawa manifold in fact the weaker condition

R
(T )
i[jkl] = 0 (6.33)

is satisfied.

14The calculation was done using the grtensor II Maple package.
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Finally, let us make a few comments about compactifications of string theory in relation

to the geometries that we have discussed. The σ-model geometries with torsion that have

SU(3) or SU(3)× SU(3) structure are of special interest, since they are the ones that have

a chance of playing a role in compactifications of type II string theory to Minkowski space

that leave N = 1 supersymmetry in four dimensions. Such compactifications have been

extensively studied from the supergravity point of view.15 If we consider the classification

of type II N = 1 SU(3) vacua [34, 35], the only solutions that can be seen from the σ-

model side are those that have (2, 1) worldsheet supersymmetry.16 One can argue that

(2∗, 1) geometries don’t appear in the above classification because they in fact break all

spacetime supersymmetry. This is substantiated from the worldsheet perspective, because

spacetime supersymmetry is described by the spectral flow of the N = 2 algebra, which is

apparently no longer present when the N = 2 algebra is deformed by the Nijenhuis tensor

symmetry (6.10). Thus one would expect (2∗, 2) models to preserve N = 1 spacetime

supersymmetry and (2∗, 2∗) models to again break all supersymmetry.17 In addition to

this, the Iwasawa manifold is a consistent background for compactifications of the Heterotic

string to Minkowski space, since the requirement of spacetime supersymmetry is that the

manifold is complex, W1 = W2 = 0, and that 2W4 +W5 = 0 [60]. The {W+
1 ,W

+
2 } Iwasawa

manifold is a consistent internal manifold for compactifications of type IIA string theory

to AdS4, since the condition on the intrinsic torsion for such compactifications is that it is

contained in W+
1 ⊕W+

2 [62].

7. Topological models on Calabi-Yau with three-form flux

The three dimensional AKSZ action (5.3) with only a closed H-flux turned on can always

be reduced to two dimensions. This is due to the fact that one can always perform a

b-transform with db ∝ H, and choose the constant of proportionality in such a way that

the H-twisted Courant bracket (2.12) gets deformed to the standard Courant bracket, or

equivalently, that the twisted BV bracket (5.13) gets deformed to the untwisted one (4.5).

Let us consider the bi-Hermitian case as an example, when the two complex structures

obey ∇±I(∓) = 0 (see (6.15)). One possibility to define an A-type topological model is to

start from the generalized structure J(−), which is integrable with respect to the H-twisted

bracket. To go down to two dimensions one can make use of the fact that

J ′(−) = exp (−b)J(−) exp (b) (7.1)

is integrable with respect to the standard Courant bracket (2.6). The three dimensional

AKSZ action becomes a total derivative and reduces to the Zucchini action (4.19) with

J i
j = I i

(+)j − I i
(−)j +

(
Iim
(+) + Iim

(−)

)
bjm , P ij = −

(
I

ij
(+) + I

ij
(−)

)
, (7.2)

15See [19] for a review.
16To include RR fields one would need to consider the GS or Berkovits formulation of the string theory

σ-model.
17We note that Type II SU(3)×SU(3) vacua that preserve N = 1 supersymmetry have not been classified

in terms of torsion classes.
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Lij = I
(+)
ij + I

(−)
ij +

(
I m
(+)j − I m

(−)j

)
bim +

(
I

mp
(+) + I

mp
(−)

)
bimbjp ,

where 3db = H. The b-field doesn’t transform as a tensor unless H is exact, and therefore

neither do J and L. It would be interesting to gauge fix and compare this model with the

topological model obtained by twisting the (2, 2) bi-Hermitian σ-model [63 – 66].

Here we investigate a simpler case of a Calabi-Yau (CY) manifold with H-flux. We

emphasize that on a CY the complex structure I and the (3, 0)+(0, 3) form Ω are covariantly

constant with respect to the Levi-Civita connection. By a CY with flux we mean that a

three form H is turned on, but it doesn’t play the role of torsion. The starting point for the

AKSZ construction of the A-model is the generalized structure Jsym (2.9). In the presence

of H-flux there are two possible types of deformations. One kind occurs at the level of

the AKSZ action, and the other at the level of gauge fixing. The former is given by the

membrane model defined by the generalized structure

J ′sym = exp (b)Jsym exp (−b) , (7.3)

which is integrable with respect to the H-twisted bracket. That is, taking

J i
j = Iimbmj , P ij = Iij and Lij = Iij + bimbjpI

mp (7.4)

in the action (5.3), with 3db = H, defines the natural three dimensional model on a CY

with flux.

A deformation can also occur at the level of gauge fixing, because one can pick a gauge

fixing fermion that depends on a non trivial b-field, or on H itself. In the remainder of this

section we study such deformations for the standard A-model. In section 3 we showed that

an anomaly-free theory should be invariant under deformations of the gauge fixing fermion,

but because the arguments leading to this conclusion are only valid at a perturbative level,

they may fail for topological theories.18 In the context of the standard A-model we showed

that the role of the gauge fixing fermion (4.22) was related to a b-transform when db = 0.

When db 6= 0 the model becomes the three dimensional one described above, and so the

gauge fixing fermion (4.22) extended to a membrane plays a role in the definition of the

three dimensional model based on (7.3). It follows that the simplest deformation of the

standard A-model is generated by the fermion constructed from the (2, 0) + (0, 2) part of

the b-field:

Ψb =

∫
d2σ

(
bα

β
π−αψ

β
+ + bβαπ+βψ

α
−

)
. (7.5)

The maps on which the A-model is evaluated are obtained by setting the BRST trans-

formations of ψβ
+ and ψ

β
− to zero [69]. These can be read off from the terms proportional

to ψ−∗β and ψ+
∗β

in (4.14), so:

∂−φ
β + iΓββ

αψ
α
−χβ = 0 ∂+φ

β − iΓββ
αψ

α
+χβ = 0 . (7.6)

18For an example of a construction that does depend on the gauge fixing fermion, in the context of

one-dimensional topological theories introduced in [67], see [68].

– 27 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
3

The solutions are obtained by setting the fermions to zero, and therefore the A-model is

evaluated on holomorphic maps. After transforming the theory by the fermion (7.5) these

maps are deformed to

∂−φ
α + ibαβπ−β + igαβ

,ηψ
η
−χβ − ibατg

αβ
,αψ

τ
−χβ = 0 , (7.7)

before the auxiliary fields π−β are integrated out (see appendix C). There is a similar

expression involving ∂+φ
β. The term in the action quadratic in the auxiliary fields is

deformed to

−i

∫
d2σ

(
gαβ + bακb

β
ηg

κη
)
π+βπ−α . (7.8)

The object in the parentheses needs to be inverted in order to obtain the equations of

motion for the auxiliaries, and we can expect an inverse to exist at a generic point in the

field space. Let us denote the object in the parentheses as g̃αβ and its inverse as g̃αβ . Then

after eliminating the auxiliaries, we obtain that the model is evaluated on maps satisfying

∂−φ
α − bηαg̃ην∂−φ

ν + bηαg̃ηνb
ν
κ∂−φ

κ = 0 . (7.9)

When b transforms like a tensor this is a contribution that one would get from an infinites-

imal change of coordinates of the form

φα → φα +Aα
βφ

β +Bα
β
φβ (7.10)

which, due to the presence of the last term, doesn’t respect the choice of complex structure.

Since the A-model does not depend on the choice of complex structure, transformations

of this form will leave the theory invariant. However, when 3db = H with H not exact,

the model is evaluated on maps which are not holomorphic with respect to any complex

structure on the target space.

How could this change the content of the theory? The partition function of the A-

model coupled to topological gravity19 can be evaluated exactly at each genus g and takes

the form,

Zg =
∑

β

Ng,β exp (−tω · β) . (7.11)

Here t is a measure of the size of the CY (which we have implicitly set to one in (4.14)), ω

is the Kähler form, and

ω · β :=

∫

φ(Σ)
ω , (7.12)

where φ(Σ) denotes the homology class of the embedding of the worldsheet in the target

space. It is straightforward to show that ω ·β is independent of the element of the homology

class. The exponential term is present because, up to terms proportional to equations of

motion, the A-model action can be written in the form

S = tω · β − it

∫
d2σ{Q,V } , (7.13)

19If one doesn’t couple the A-model to topological gravity only the genus zero contribution survives. For

a review of topological strings the reader is referred to one of the following [70 – 72].
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where Q is the A-model BRST operator.20 Therefore, the partition function has two

contributions, one from ω · β, that depends on the Kähler form, and the other which is

a Q of something. Naively the latter shouldn’t contribute to the path integral (see the

discussion around (3.26)). However, due to an anomaly there actually is a contribution,

and it is given by the Gromov-Witten invariants Ng,β. These are topological invariants of

the CY manifold that, in a certain sense, count the number of holomorphic maps in the

target space at each genus and in each homology class. Going back to the deformation (7.9)

with a b-field that doesn’t transform tensorially, one expects the numbers Ng,β to change,

because on one hand a change in the gauge fixing fermion corresponds to a change of the

second term in (7.13), and on the other hand the partition function is no longer evaluated

on holomorphic maps. The ω · β contribution clearly remains the same.

Finally, we give some remarks about the impact of gauge fixing fermions that depend

on H-flux. The possibilities are a lot more numerous compared with fermions that can be

constructed from the b-field and the Kähler form, and can be classified according to the

number of auxiliary fields they contain. Let us illustrate with an example from each class:
∫
d2σHijβ∂−φ

i∂−∂+φ
jψ

β
+ ,

∫
d2σHα

jβ
π−α∂+∂−φ

jψ
β
+ ,

∫
d2σH

αγ

β
π−α∂+π−γψ

β
+ .

(7.14)

The case without auxiliaries deforms the holomorphic maps by H dependent terms. For

a single auxiliary the same is true, but, as for the fermion (7.5) one needs to invert the

tensor that appears in the term quadratic in the auxiliaries, which will now depend on

H. For the case with two auxiliaries it is a lot less clear how to proceed, since after the

canonical transformation the action contains a term quartic in the π fields, in general with

worldsheet derivatives acting on them. More work needs to be done to understand how to

handle these cases. It may be that the π fields need to be treated as propagating fields, in

which case one would need to introduce auxiliary pairs and perform gauge fixing as for the

Poisson σ-model (4.12).

8. Conclusions

In this paper we have studied a topological A-type models with flux in the AKSZ con-

struction, arguing that generically such models are topological membranes rather than

topological strings, and have shown that they can be defined on a large class U(m)- and

U(m) × U(m)-structure geometries. From the point of view of type II string theory com-

pactifications both rank three fluxes and almost complex geometries are of interest in the

context of mirror symmetry. This stems from the fact NS-NS H-flux plays a more intricate

role in mirror symmetry than R-R fluxes. Whereas R-R fluxes are simply interchanged,

turning on H-flux has a more dramatic impact. In [20] it was shown that the mirror

manifold of a Calabi-Yau three-fold with electric H-flux is a half-flat manifold. The flux

in this case is not a three-form but is related to the intrinsic torsion. In [36] the analy-

sis was extended to magnetic H-flux, and the mirrors were shown to be manifolds with

20The reason why the equivalence is only up to the equations of motion is that we are using the BRST

operator instead of the full BV operator (3.28).
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SU(3) × SU(3) structure. While we have shown that the topological membrane model can

be defined on three particular examples of half-flat manifolds, it would be interesting to

find out whether this is generically true, or whether there is a restriction on the possible

half-flat manifolds. It is worth stressing that the above examples are not solutions of string

theory compactified to Minkowski space, so it is of some interest that the topological mem-

brane can be defined on a class of almost complex geometries inspired by (1, 1) σ-models,

which are expected to contain solutions that preserve N = 1 supersymmetry. The half-flat

geometries can be lifted to solutions of M-theory, and in this context it would be interest-

ing to investigate whether there is a relation between our construction and the membrane

models of topological M-theory [73] studied in [74 – 76].

Furthermore, mirrors of manifolds with H-flux are in general not expected to be ge-

ometric. Non-geometry has mostly been studied in the context of T-duality, for example,

on a six-torus with H-flux supported on some three-cycle [77]. After performing a single

T-duality along a direction with non-zero flux, one obtains a twisted torus, which is char-

acterized by the tensor f i
jk. After preforming a second T-duality one obtains a manifold

which is geometric only locally. It is still possible to understand it geometrically, by dou-

bling the directions supported by the H-flux, and considering transition functions between

patches that include T-duality transformations; this type of geometry is referred to as a

T-fold [78 – 82]. A different way to understand this T -dual is in terms of a manifold fibered

by non-commutative tori [83 – 85]. The various points of view have been reconciled in [86],

and it is understood that non-commutativity is seen only in the open string sector [87, 37].

Performing a T-duality along all three directions supported by H-flux is conjectured to

lead to a space which is not geometric even locally [88, 77] (interestingly, [89] conjectures

that it can still be understood in the T-fold formalism). Analogously to H and f , the

fluxes Qij
k and Rijk can be associated to the two more exotic spaces. The fluxes that arise

when considering mirror symmetry of Calabi-Yau manifolds with flux can be classified in

the same way [36]. In light of all this, the fact that the fluxes in the membrane model

follow the same pattern is very suggestive, and in future work we would hope to obtain a

more concrete understanding of the relations involved.

The analysis of T-duality transformations on tori with NS-NS H-flux has also revealed

that β-transforms, where β is a (0,−2) type tensor, are ”mirror” to a subset of b-transforms,

where b is a (0, 2)-form [87, 86, 37]. The analysis suggests that non-commutativity on an

SU(3) × SU(3)-structure manifold with Q-type flux can be understood in terms of a de-

formation of the B-model action by a Poisson σ-model action, with the Poisson structure

given by β. On the mirror side this is related to a deformation of the A-model on a Calabi-

Yau with magnetic flux by a non-trivial (0, 2) b-field, but it is not clear precisely how the

deformation should arise, which suggests that perhaps the deformations we have discussed

in section 7 should be taken seriously in this context. One should note, however, that the

mirror map for non-commutative deformations constitutes a very difficult problem. While

the category of B-branes, including their non-commutative deformations, is well under-

stood, the relation to the ”mirror” category of A-branes is far from clear [90, 91, 87, 92].

It has been suggested that to clarify the relation one should understand deformation quan-

tization of the Poisson structure associated with the A-model. As explained in section 4,
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this requires keeping the auxiliary fields, which one is also forced to do when considering

deformations of the A-model by gauge fixing fermions that depend on H, as we argued in

section 7.

Finally, we expect that it would be rewarding to study topological models on bi-

Hermitian geometries from the AKSZ perspective. These have been constructed via the

twisting procedure [63 – 66], but not all aspects are fully understood to date.
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A. Properties of the antibracket

ǫ(A,B) = ǫA + ǫB , (A.1)

(A,B) = −(−1)(ǫA+1)(ǫB+1)(B,A) , (A.2)

(A+B,C) = (A,C) + (B,C) , (A.3)

(−1)(ǫA+1)(ǫC+1)(A, (B,C)) + CYCLIC = 0 , (A.4)

(AB,C) = A(B,C) + (−1)ǫB(ǫC+1)(A,C)B . (A.5)

Here ǫA ∈ Z2 is zero when A is a bosonic object and one when A is fermionic.

B. Integrability conditions for the deformed Courant bracket

Written below are the component expressions for the integrability conditions (2.8) of

a an almost generalized complex structure (2.2) with respect to the deformed Courant

bracket (2.16).

Sijk :=P [ij
,mP

|m|k] + k2P
m[kP |p|jf i]

mp + 2k3P
m[kJj

pQ
i]p

m (B.1)

−
k4

3

(
Rikj − 3J [k

pJ
j
mR

i]pm
)

= 0

V
jm
k :=P i[mJ

j]
i,k − 2P i[mJ

j]
k,i + J i

kP
jm
,i − P

i[m
,k J

j]
i − k1P

ijP pmHipk (B.2)

+ k2

(
−2Jp

kP
i[jf

m]
pi − 2J [m

pP
j]if

p
ki

)

+ k3

(
−Qmj

k − 2Jp
kJ

[j
iQ

m]i
p + Jm

i J
j
pQ

ip
k + 2LikP

p[mQj]i
p

)

+ 2k4LikJ
[j

pR
m]ip = 0
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T k
ij :=3L[ij,m]P

mk + 2
(
Jk

mJ
m
[j,i] + Jm

[jJ
k
i],m

)
+ 2k1P

mkJ
p
[jHi]mp (B.3)

+ k2

(
fk

ij + 2PmkLp[jf
p
i]m + 2Jk

mJ
p
[jf

m
i]p − Jm

i J
p
jf

k
mp

)

+ k3

(
2Lm[iJ

p
j]Q

mk
p + 2Jk

pLm[jQ
mp

i]

)
+ k4LimLpjR

mpk = 0

Wijk :=2LkpJ
p
[j,i] + Lp[iJ

p
j],k − 3Jp

kL[pj,i] + J
p
[jLi]p,k + 2Jp

[iLj]k,p (B.4)

+ k1

(
Hijk − 3Jp

[iJ
m
jHk]pm

)

+ 6k2J
m
[iLj|p|f

p

k]m + 3k3Lm[kLj|p|Q
pm

i] = 0

C. A-model extended action with auxiliary fields

Below we give the action for the A-model with the auxiliary fields π+ and π−. It is the

starting point for understanding deformations of the A-model of the kind described in

section 7.

S =

∫
d2σi

[
− gαβ∂+φ

α∂−φ
β + gαβ∂+φ

β∂−φ
α − gαβπ+βπ−α (C.1)

+ χα∂+ψ
α
− − χα∂−ψ

α
+ − π−α∂+φ

α + π+α∂−φ
α

− g
κβ
,αψ

α
+χβπ−κ + gβκ

,αχβπ+κψ
α
− + g

αβ
,κνψ

κ
−ψ

ν
+χαχβ

+ φ∗αg
αβχβ − φ∗αg

αβχβ − χα
∗ g

βκ
,αχβχκ − χα

∗ g
βκ
,αχβχκ

+ ψ+
∗κ

(
i∂+φ

κ + g
βκ
,αψ

α
+χβ

)
+ ψ−∗κ

(
−i∂−φ

κ + gκβ
,αψ

α
−χβ

)

− π−ν
∗

(
∂−χα + gβκ

,νχβπ−κ + gαβ
,κνψ

κ
−χαχβ

)

− π+α
∗

(
−∂+χα + g

βκ
,αχβπ+κ + g

αβ
,ανψ

ν
+χβχα

)

+gαβψ−∗αψ
+
∗β

− π−α
∗ ψ+

∗κg
βκ
,αχβ − π+α

∗ ψ−∗κg
κβ
,αχβ + π+κ

∗ π−ν
∗ g

αβ
,κνχαχβ

]
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